Business Consulting

 

Twitter
Facebook
Contact

Consulting & SERVICES


Deep Learning Partnership offer a range of AI and Blockchain consulting and training solutions. Deep Learning technologies used include computer vision and natural language processing frameworks such as TensorFlow, Keras and Gluon. We have deep experience in growing and managing agile data science and data engineering teams along with building key partner relationships and managing client expectations. Deep Learning Partnership design and implement end to end AI and Blockchain solutions for our Enterprise and startup clients across all business domains. Our training courses below reflect our Consultants' wide range of expertise. Contact us about any of these or, if you are a Company, we can arrange bespoke training to suit where you are on your AI and Blockchain journey. Please contact us to find out more about our consulting or training solutions at pmorgan@deeplp.com.

​​Training Courses

1. AI Overview -- 1 day

In this course we take the attendees through an overview of AI. What it is, where it came from, how we got here, and where it's going. We cover the technology basics as well as how AI is being used by companies from startups to multinationals to develop new services and products and to improve existing ones. We look at the data sets, hardware, algorithms and full-stack platform deployments, and then focus on business use cases from real world AI deployments. This course is high level (no maths or code) so is suitable for business executives and people curious as to what the new AI-first world will look like from a business and social perspective.

  

2. Introduction to TensorFlow – 1 day

TensorFlow has become the most popular deep learning framework since Google open sourced it in November 2015. Find out what it can do for your business in this gentle overview of deep neural networks and the TensorFlow framework. This is a high level business focussed introduction to TensorFlow and, as such, there will be no hands on element to this course, although you can expect the odd code snippet to appear in a couple of the slides.


3. Hands-on with TensorFlow – 3 day
Since Google open-sourced their Deep Learning framework TensorFlow, it has become a very popular tool for Data Scientists and Machine Learning Experts. In this course we will explore the various facets of TensorFlow – expect a 50% lab content with this course, both locally on your laptop, and in the cloud.


4. TensorFlow Deep Dive – 5 day 

In this intensive five day hands on TensorFlow course, expect a lot of labs (approximately 80/20 lab/theory). We will explore, through theory and labs, how TensorFlow is being used to classify images, recognise text and speech, and generate images and language. We will explore this using a variety of image, text, speech and video data sets. Labs will be done both locally and in the cloud using both GPU's and TPU's.


5. Data Science Overview – 1 day
A one day overview of the main concepts and technologies underlying the practice of data science – no maths or coding required. We will cover the basics from the business case to what technologies to use and when to use them and how they are being used in businesses today to drive innovation and efficiencies. From Hadoop to Spark from machine learning to AI.

6. Fundamentals of Data Science – 5 day
Consisting of a 50/50 split of concepts and labs, this five day data science course explores all of the main aspects of data science. Going into much more depth than our one day overview course in terms of both theory and practice, topics covered include data collection and cleaning, and data analysis using frameworks such as Spark and TensorFlow. All labs are developed and performed using python.

7. Blockchain Overview – 1 day
Overview of Blockchain, the reasons behind its development, use cases today and in the future, along with the underlying technology. We will examine the various technologies, at a fairly high level, of the blockchain framework, including smart contracts, consensus algorithms, distributed applications (or Dapps), cryptocurrencies, ICO’s, as well as business applications. This is intended as an introduction class for people who are thinking about entering into the blockchain world, would like to understand exactly what the blockchain is, and are wondering what it can do for their business. There will be no coding in this introductory overview.


8. Blockchain Deep Dive – 3 day
Having been introduced to the main concepts and drivers behind the blockchain technology, we will dive straight in and begin coding some simple smart contracts. We will cover the various types pf blockchains and cryptocurrencies available in the market today, looking at the pros and cons of each one, as well as examining some specific business use cases. For each business case, we will write some code to actually develop the relevant smart contracts and Dapps which can then be applied to have immediate impact in that domain.


9. Programming Julia for Data Science – 3 day
In this three day hands on course, we will explore Julia’s capabilities and see why it has fast become such a favoured language for doing data science and machine learning. Along with getting to know the language and some of its main libraries, we will apply it to various business data sets and use it to do some analysis to produce meaningful outcomes and predictions. This course will consist of a 70/30 mix of practice and theory with Labs being performed using Jupyter notebooks.

10. Practical AI with GPU’s – 2 day
Massive (e.g., petabyte scale) data sets require massively parallel processing in order to do timely analysis. GPU’s are purpose built for this task, and in this practical hands on course, we will learn how to programme them to extract useful information. We will also look at the how TPU's are being used in the Google Cloud Platform. 50/50 practice/theory.

11. Natural Language Processing in Practice – 3 day
In this course we will look at the techniques and analysis of natural language processing (NLP), including speech and text recognition and translation. We will learn how to use some of the libraries and frameworks such as word2vec, TensorFlow and RNN’s to analyse language data streams in practice. 40/60 theory/practice.

12. Introduction to Quantum Computing – 1 day
In this beginners course, we will take an overview of quantum computing including a little bit of theory (quantum physics without too much maths), hardware, principles, quantum algorithms and how they differ from classical machine learning algorithms, as well as looking at quantum computing services available on the market today (D-wave and cloud). We will also look at some QC use cases.
 
13. Quantum Computing Deep Dive – 3 day
We will look at the theory behind quantum computing as well as the practical aspects of building and actually programming with a quantum computer. There will be a hands on element whereby we will use a quantum computer simulator to programme a selection of quantum algorithms. Familiarity with the Linux command line as well as one programming language such as Python or C++ is required. There will be a roughly 50/50 split theory/hands on.


14. Introduction to Neuromorphic Computing – 2 day

Neuromorphic computing is an emerging computing paradigm, which uses an analog processor for spiking neural networks, much the way the brain does computations. Neuromorphic processors utilise massively parallel computations in their synaptic connections between the artificial neurons and run at very low power (1000x reduction in power consumption over CPU's, for example). Despite sounding esoteric, this technology is seeing commercial application in companies and government organisations today. In this two day overview course, we will examine the technology from theory to practice, survey the past and present research and product landscapes, take a look at the various product offerings available today and the differences between them, and cover some case studies to show how companies are already reaping performance benefits from this exciting new technology. Basic python programming is required.


15. Introduction to Bayesian Statistics – 2 day
Starting off with a comparison between Bayesian and classical statistics, this course introduces the participant to the basics of Bayesian statistics including Bayesian probability and inference. It will cover theory and practice with some hands on labs in python so that the student can get experience with analyzing actual data sets using Bayesian methods.


16. TensorFlow Bootcamp -- 12 weeks

12 week bootcamp covering the most popular deep learning framework open sourced from Google.

Week 1 - Basics of deep learning - math, data sets, hardware (CPU, GPU, ASIC, cloud), mathematical foundations of neural networks, deep learning frameworks

Week 2 - Basic Convolutional Neural Networks with TensorFlow

Week 3 - Advanced CNNs

Week 4 - Natural Language Processing and Time Series Data with TensorFlow

Week 5 - Basic Recurrent Neural Networks

​Week 6 - Advanced RNNs and LSTMs

Week 7 - Deep Reinforcement Learning with TensorFlow

Week 8 - Advanced Topics in Deep Learning (including GANs, one-shot learning and transfer learning)

Weeks 9-12 - Capstone Project - Students work with a company on a commercial deep learning project with the view to getting hired upon completion

​Prerequisites: Basic math (linear algebra, calculus and probability), basic programming skills, especially python, comfortable at the command line. Price £10k.


17. Blockchain Bootcamp -- 12 weeks (under development)
12 week bootcamp covering the technology and applications behind Blockchain.
Week 1 - Basics of Blockchain - motivations, mathematical foundations, algorithms, protocols and use cases

Week 2 - Dapps and smart contracts
Week 3 - Basic Ethereum use cases
Week 4 - Advanced Ethereum use cases
Week 5 - Cryptocurrencies and how they are being used in business
Week 6 - The Hyperledger
Week 7 - Blockchain as a Service
Week 8 - Advanced Topics in Blockchain (including hashgraph, sharding, addressing current bottlenecks)
Weeks 9-12 - Capstone Project - Students work with a company on a commercial blockchain project with the view to getting hired upon completion

​Prerequisites: Basic math (linear algebra, calculus, algorithmic thinking), basic programming skills in at least one language, comfortable at the command line. Price £10k.